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Universidad de Los Andes, Mérida, Venezuela

Recibido: marzo 2021
Aceptado: abril 2021
Autor para correspondencia: P. Grima-G. e–mail: peg1952@gmail.com

DOI: https://doi.org/10.5281/zenodo.4968549

Abstract

In the present investigation Polycrystalline samples of Cu3TaTe4 were prepared by the melt and anneal

method. X-Ray Diffraction (XRD) and Diffuse Reflectance Spectroscopy (DRS) measurements were

performed to verify the crystal structure and calculate the indirect and direct band gaps. The results

showed a lattice parameter a = 5.9082 Å, a stoichiometry with a Ta deficit of 17.8 %, indirect bandgap

Ei
g = 0.38 eV, and a direct gap Ed

g = 2.38 eV. The analyzes confirm that Cu3TaTe4 can be used as an

p-type absorbent for thin film solar cells with the advantages that its elements have low toxicity and have

lower costs than those used today.
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Art́ıculo:

Cu3TaTe4: Medidas de śıntesis, difracción de rayos X, microscoṕıa
electrónica de barrido y reflectancia difusa

Resumen

En la presente investigación fueron preparadas muestras policristalinas de Cu3TaTe4 por el método de

fusión y recocido. Se realizaron medidas de difracción de rayos X (DRX) y espectroscoṕıa de reflectancia

difusa (ERD) para verificar la estructura cristalina y calcular las brechas de enerǵıa directa e indirecta.

Los resultados mostraron un parámetro de red a = 5, 9082 Å, una estequiometŕıa deficitaria en Ta del

17,8 %, una brecha de enerǵıa indirecta Ei
g = 0, 38 eV y una brecha de enerǵıa directa Ed

g = 2, 38 eV. Los

análisis confirman que el Cu3TaTe4 puede ser empleado como absorbente p-tipo para células solares de

peĺıculas finas con las ventajas de que sus elementos presentan baja toxicidad y tienen costos menores a

los empleados en la actualidad.

Palabras claves: Cu3TaTe4; reflectancia difusa; brecha óptica de enerǵıa.
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1 Introduction

The sulvanite family of compounds, with chem-
ical formula Cu3-TM-VI4, (TM is the transi-
tion metal V, Nb, or Ta and VI is S, Se,
or Te), is composed of nine members; three
sulfides: Cu3VS4, Cu3NbS4, Cu3TaS4; three se-
lenides: Cu3VSe4, Cu3NbSe4, Cu3TaSe4; and three
tellurides: Cu3VTe4, Cu3NbTe4, Cu3TaTe4. They
are all semiconductors. As-growth samples show p-
type electrical conductivity, high ionic mobility, low
hole effective mass, high optical absorption in the
visible and UV range, and optical bandgaps suitable
for their use as an absorber layer in thin-film solar
photovoltaic devices [1, 2].

Sulvanites crystallize in the cubic structure, space
group (N 215), consisting of Cu, TM and VI atoms
located at the atom-sites (Wyckoff coordinates): 3d
(0.5, 0, 0), 1a (0, 0, 0) and 4e (u, u, u), respectively
(Figure 1) [3, 4, 5], described for the first time by
Pauling and Hultgren [6] for the natural mineral,
Cu3VS4.

Figure 1: The unit cell of sulvanite Cu3TaTe4.
Image created using Diamond software version 3.2e
with lattice parameter a = 6.025 Å [7] and anion
displacement u = 0.2558 [7]

Although this semiconductor family has been
extensively studied by ab initio calculations [2]-[5],
[7]-[17] experimental results are relatively scarce, in
particular for Cu3TaTe4. The experimental value
of the lattice parameter a for Cu3TaTe4 has been
reported by Hulliger [18], Zitter et al. [19], and Li
et al. [20] as 5.928 Å, 5.9283 Å, and 5.930(2) Å,
respectively; in good agreement with theoretical
calculations of Hong et al. (6.01 Å) [13] and Kehoe

et al. (5.906 Å) [2], (6.033 Å) [9]. No experimental
data for optical properties, as the bandgap (Eg),
were found in the literature.

In this work, the measurement of the bandgap
value for Cu3TaTe4 is reported for the first
time. The bandgap is essential for applications in
optoelectronic devices as light detectors and solar
cells.

2 Experimental procedure

2.1 Synthesis

Polycrystalline samples of Cu3TaTe4 have been
produced by the melt and anneal method as is
described below. Starting materials (Cu, Ta, and
Te) with nominal purity of 99.99 wt. % in the
stoichiometric ratio were mixed in an evacuated
(10−4 Torr) and sealed the quartz tube with the
inner walls previously carbonized to prevent the
chemical reaction of the elements with quartz. The
quartz ampoule is heated until 723 K (melting
point of Te) keeping this temperature for 48 h and
shaking all the time using an electromechanical
motor. This procedure guarantees the formation of
binary species at low temperatures avoiding the
existence of free Te at high temperatures, which
could produce Te deficiency in the ingot. Then the
temperature was slowly increased until 1423 K, with
the mechanical shaker always connected for better
mixing of the components. After 24 h, the cooling
cycle begins until the anneal temperature (800 K)
with the mechanical shaker is disconnected. The
ampoule is keeping at the annealing temperature
for 30 days to assure thermal equilibrium. Then the
furnace is switching off, letting naturally cooling the
ampoule to room temperature.

2.2 X-Ray Diffraction (XRD)

X-ray powder diffraction data were collected
employing a diffractometer (Siemens D5005)
equipped with a graphite monochromator (CuKα

λ = 1.54059 Å) at 40 kV and 20 mA. Silicon powder
was used as an external standard. The samples were
scanned from 10− 100◦ 2θ, with a step size of 0.02◦

and counting time of 20 s. The Bruker analytical
software was used to establish the positions of
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Grima et al, Vol. 7, Nro. 20, 9–15, enero–abril, 2021.

Figure 2: X-ray diffraction pattern of Cu3TaTe4. The numbers over the peaks correspond to the hkl-Miller
indices. Red asterisks signal two unidentified peaks

the peaks from the CuKα1 component and to
strip mathematically the CuKα2 components from
each reflection. The peak positions were extracted
employing a single-peak profile fitting carried out
through the Bruker DIFFRACplus software. Each
reflection was modeled utilizing a pseudo-Voigt
function.

2.3 Scanning Electron Microscopy
(SEM)

Stoichiometric relations were investigated by scan-
ning electron microscopy (SEM) technique, using
Hitachi S2500 equipment. The microchemical com-
position was found by an energy-dispersive x-ray
spectrometer (EDS) coupled with a computer-based
multichannel analyzer (MCA, Delta III analysis,
and Quantex software, Kevex). For the EDS anal-
ysis, Kα lines were used. The accelerating voltage
was 15 kV. The samples were tilted 35 degrees. A
standardless EDS analysis was made with a relative
error of ±(5− 10) % and detection limits of the
order of 0.3 wt %, where the k-ratios are based on
theoretical standards.

2.4 Diffuse Reflectance Spectroscopy
(DRS)

Optical absorbance has been measured in the
energy range 0.5 to 6 eV using Diffuse Reflectance
Spectroscopy (DRS) technique using a UV-Visible-
IR spectrophotometer equipped with a diffuse
reflectance accessory (integrating sphere) capable
of collecting the reflected flux. The sample was
ground in an agate mortar to obtain a fine powder
(< 10 µm). Barium sulfate (Merck DIN 5033) was
used as an internal standard.

3 Results and discussion

3.1 X-ray diffraction

Figure 2 shown the X-ray diffraction pattern. Using
DIVOL06 software [21] the lattice parameter has
been calculated as a = 5.9082 Å in good agreement
with previous reports [22]. Traces of a secondary
phase, signaled by red asterisks in Figure 2, are also
observed; however, this phase cannot be unambigu-
ously identified with the present information.
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Table 1: Scanning Electron Microscopy (SEM) results for Cu3TaTe4

Weight Concentration % Atom Concentration %
Cu Ta Te Cu Ta Te

Cu3TaTe4 pt1 23.35 ± 0.52 10.06 ± 0.25 66.59 ± 0.70 36.83 ± 0.83 10.85 ± 0.26 52.32 ± 0.55
Cu3TaTe4 pt2 23.19 ± 0.54 9.90 ± 0.25 66.91 ± 0.72 36.65 ± 0.85 10.70 ± 0.27 52.65 ± 0.57
Cu3TaTe4 pt3 24.31 ± 0.56 8.94 ± 0.23 66.76 ± 0.72 38.18 ± 0.88 9.60 ± 0.25 52.22 ± 0.57
Cu3TaTe4 pt4 23.48 ± 0.56 9.69 ± 0.17 66.83 ± 0.73 37.04 ± 0.88 10.45 ± 0.18 52.51 ± 0.58
Cu3TaTe4 pt5 23.05 ± 0.56 8.98 ± 0.16 67.97± 0.74 36.56 ± 0.88 9.75 ± 0.18 53.69 ± 0.58

Mean values 23.48 9.51 67.01 37.05 10.27 52.68

3.2 Scanning Electron Microscopy
(SEM)

To verify the stoichiometry SEM measurements
were performed. Figure 3 display the corresponding
microphotography, indicating the five (5) points
where the experimental stoichiometry was mea-
sured. Table 1 present the obtained values. The
calculated nominal stoichiometry of Cu3TaTe4, in
atom concentration, is Cu = 37.5 %, Ta = 12.5 %,
and Te = 50.0 %; the porcentual deviations with
respect to the mean experimental values are
Cu = 1.2 %, Ta = 17.8 % and Te = 5.4 %.

Figure 3: Microphotography of Cu3TaTe4. The
numbers signal the points where the stoichiometry
was measured in correspondence with Table 1

3.3 Diffuse reflectance

The optical absorption of Cu3TaTe4 was measured
at ambient conditions using the diffuse reflectance
technique [23] where the reflectance F (R∞) is given
by the Equation (1)

K

S
=

(1−R∞)2

2R∞
= F (R∞) , (1)

K and S are the absorption and scattering
coefficients of the sample, respectively; R∞ is
the reflectance, and F (R∞) is usually termed
the remission or Kubelka-Munk (K-M) function.
Figure 4 show the (K-M) function for Cu3TaTe4.

Figure 4: Experimental absorbance for Cu3TaTe4.
The numbers correspond to the energies of the
absorption bands

The experimental absorbance of Cu3TaTe4 in
the energy interval 1 < E(eV ) < 6 shows several
structures or energy bands that, in the absence of
other experimental results, can be compared with
calculations of Kehoe et al. [2], Ali et al. [7] and
Espinoza et al. [8]. It is founding a relatively good
agreement because the off-stoichiometric character
of real samples is not properly represented in
theoretical studies. It was postulated that intrinsic
defects within the material affect the bandgap
as measured by optical spectroscopy, something
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that can be accounted for if excitonic effects were
considered [1].

Concerning the energy gap, it is accepted
that fundamental band gaps of all sulvanites
are naturally indirect [9] because the conduction
band minimum (CBM ) is located at X point of
the Brillouin Zone (BZ ) while the valence band
maximum (VBM ) is located at R point of the
BZ [7]. In consequence, indirect transitions are
R→ X type, whereas direct transitions (if they are
not forbidden) are at X point.

Figure 5: Absorbance (left), indirect (center), and
direct (right) optical energy gaps of Cu3TaTe4

In Figure 5, using the absorption of Figure 4 and
Tauc’s plot method [24], direct (X) and indirect
(R→ X) transitions values have been obtained
founding Eig = 0.38 eV and Edg = 2.39 eV. The Eig
results too much lower than those calculated theo-
retically. Usually, theoretical calculations produce
values that are lower than experimental [7] in
consequence the disagreement must become from
the polycrystalline character of the sample. The
fingerprint of cationic disorder is the broad shoulder
in the direct gap curve of Figure 5. Defect states and
phonon absorption produce an additional optical
absorption at energies a little lower than the
bandgap.

The direct gap Edg value is higher than those
calculated as usually happens. However, the curve of
Edg fits very well with Tauc’s method clearly showing
an absorption front. The bandgap of sulvanites
increases with the atomic number of the chalco-

gen atom (S, Se, Te); and effectively, comparing
the direct bandgap of Cu3TaTe4 (2.39 eV) (this
work), Cu3TaSe4 (2.43 eV) [22], and Cu3TaSe4
(2.76 eV) [25], value of the present work accom-
plished the empirical rule.

Table 2: Comparative bandgaps values for
Cu3TaTe4

Ei
g [eV] Ed

g [eV] Reference

1.11 1.69 Kahoe et al. [2]
1.112, 1.837, 0.972 Ali et al. [7]

1.171, 1.323 Hong et al. [13]
0.38 2.39 This work

In Table 2, the experimental values are compared
with previous calculations.

4 Conclusion

Cu3TaTe4 has been synthesized by the melt-anneal
method and characterized by DRX, SEM, and
Diffuse Absorption. DRX and SEM show a poly-
crystalline sample with a = 5.9082 Å in agreement
with previous reports and a stoichiometric deficit
of Ta (17.8 %). The indirect and direct bandgaps
were measured as Eig = 0.38 eV and Eig = 2.39 eV,
respectively. These results confirm that Cu3TaTe4
may be a good candidate as p-type absorber
material for thin-film solar cells with the advantages
that their elements are not so toxic as Cd, less
expensive than Ga, and more abundant than the
rare In, materials that are extensively used in
the actuality. Also, it can be used with window
materials, as CdS with a lattice mismatch of only
1.53 %.
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