Uso de finos de pella en la industria siderúrgica venezolana.
Contenido principal del artículo
Resumen
Existe una gran variedad de subproductos de la industria siderúrgica, cuando el diámetro de los mismos es menor a 100 mesh, llevan el nombre de finos. Entre los subproductos que presentan esta característica se tiene: finos de pella, escamas, finos de casas de humo, glóbulos férreos, entre otros. Estos finos están compuestos principalmente por hierro. Sin embargo, una gran proporción de ellos no están siendo utilizados, generando pérdidas económicas, al no ser usado el hierro presente en ellos, y problemas ambientales, ya que hay grandes acumulaciones de estos subproductos. El presente estado del arte, tiene como objetivo determinar posibles usos alternativos de los finos generados en la industria siderúrgica. Para ello se realizó una búsqueda bibliográfica en trabajos académicos y patentes. Se identificaron diez (10) usos alternativos de los finos de pellas y otros subproductos de la industria siderúrgica: pellas frías, pellas fundidas, briquetas para aglomerar finos, sinterizado compuesto de pellas, pellas de material reciclado, sinterizado de material reciclado, mezcla con minerales que contengan otros metales distintos al hierro, usos de finos directamente, micrometalúrgia y modificadores de escoria. Adicionalmente, se evaluó la factibilidad de aplicar alguna de estas alternativas en la industria siderúrgica venezolana.
Descargas
Detalles del artículo
Referencias
. World Steel Association. The White Book of Steel. Bruselas: World Steel Association; 2012. 53 p.
. World Steel Assotiation. Steel and raw materials. Bruselas: World Steel Assotiation; 2021 p. 2.
. World Steel Association. Steel Statistical Yearbook 2019. Vol. 1, Steel statistical yearbook 2019. Bruselas: World Steel Association; 2019 p. 42.
. Valery I, Garcia V, Flores E. Elementos Químicos y sus Recursos Minerales. Núñez O, editor. Caracas: Instituto Nacional de Geología y Minería / INGEOMIN; 2002. 198 p.
. Ternium. Procesos y Productos. Introducción a los Procesos y Productos de Sidor. Ternium; 2005 p. 184.
. Ferrominera C. Planta de Pellas “Hernán Quívera” Incrementa la Producción en Tiempos de Pandemia. Revista Mundo Ferrosiderúrgico. abril de 2021;4–13.
. Bhagat R (CSIR NML. Agglomeration of iron ores. Boca Raton: CRC Press, Taylor & Francis; 2019. 416 p.
. Bellera Sosa B del M. Control del tamaño de las Pellas en la Planta de Pellas de Sidor , C.A. con Técnicas de Visión Artificial. Universidad de Los Andes Mérida; 2006.
. Dutta SK. Utilization of Iron & Steel Plant Wastes by Briquetting/Pelletization. IRON STEEL Rev. 2016;60(7):158–166.
. Halt JA, Roache SC, Kawatra SK. Cold bonding of iron ore concentrate pellets. Miner Process Extr Metall Rev. 2015;36(3):192–7. [11]. Aota J, Morin L, Zhuang Q, Clements B. Direct reduced iron production using cold bonded carbon bearing pellets Part 1 – Laboratory metallisation. 2006;33(5):426–428.
. Zhuang Q, Clements B, Aota J, Morin L. DRI production using cold bonded carbon bearing pellets Part 2 - Rotary kiln process modelling. Ironmak Steelmak. 2006;33(5):429–432.
. Nikai I. The use of iron ore fines in cold-bonded self-reducing composite pellets. University of Pretoria; 2015.
. Nikai I, Garbers-Craig AM. Use of Iron Ore Fines in Cold-Bonded Self-Reducing Composite Pellets. Miner Process Extr Metall Rev [Internet]. 2015;37(1). Disponible en: http://dx.doi.org/10.1080/08827508.2015.1104506
. Chokshi Y (University of B, Dutta SK (University of B. Production of Iron Ore-Coal Composite Briquette/Pellet by Using Fly-Ash and Other Binders. En: Proceeding of the international conference on science and technology of ironmaking and steelmaking [Internet]. Jamshedpur: CSIR-NML; 2013. p. 16–8. Disponible en: http://eprints.nmlindia.org/7040
. Jin C, Wang Z, Wu W, Liu S, Chen X, Liang K, et al. Special binder for converter fly ash cold-pressed pellets. China; 2021.
. Shuai L, Li H, Wu J. Technique for producing cold-bonded pellets from steel converter dust removal ash. China; 2016.
. Zhou W, Zang J, Jiang G. Production method of cold-bound pellets. China; 2021.
. Wang L, Guo P, Kong L, Lin W, Zhou Q. Utilization method of fine iron oxide red generated in hydrometallurgy process. China; 2022. [20]. Liu H. Self-reducing, cold-bonded pellets. EEUU; 2011. p. 9.
. Ghosh A, Chatterjee A. Ironmaking and Steelmaking: Theory and practice. PHI Learning Private Limited. Nueva Delhi; 2008. 481 p.
. Pal J, Ghorai S, Goswami MC, Ghosh S, Ghosh D, Bandyopadhyay D. Development of fluxed iron oxide pellets strengthened by CO2 treatment for use in basic oxygen steel making. ISIJ Int. 2009;49(2):210–219.
. Abdelrahim A. Recycling of steel plant by-products by cold bonded briquetting. University of Oulu; 2018.
. Bizhanov A, Chizhikova V. Agglomeration in Metallurgy [Internet]. Gewerbestrasse: Springer; 2020. 454 p. Disponible en: http://www.springer.com/series/11054
. Kishore Das B, Mallick D. Briquetting of Iron Bearing Materials. National Institute of Technology Rourkela; 2015.
. Kumar DS, Sah R, Sekhar VR, Vishwanath SC, Sah R, Sekhar VR, et al. Development and use of mill scale briquettes in BOF. 2016;(April):1–6.
. Lohmeier L, Wollenberg R, Schröder HW. Investigation into the Hot Briquetting of Fine-Grained Residual Materials from Iron and Steel Production. Steel Res Int. 2020;91(12):1–10.
. Schütze WR. HBI - Hot Briquetting of Direct Reduced Iron. Technology and Status of Industrial Application. Köeppern. Hattingen; 2014 p. 15.
. Hoffman GE, M MJ. Method of producing a metallized briquette. EEUU; 2004.
. Meynerts U, Maurer M, Freitas Seabra Da Rocha SH, Wirtgen C. Briquetting of mill scale [Internet]. EEUU; 2013. p. 5. Disponible en: [20]. Liu H. Self-reducing, cold-bonded pellets. EEUU; 2011. p. 9.
. Ghosh A, Chatterjee A. Ironmaking and Steelmaking: Theory and practice. PHI Learning Private Limited. Nueva Delhi; 2008. 481 p.
. Pal J, Ghorai S, Goswami MC, Ghosh S, Ghosh D, Bandyopadhyay D. Development of fluxed iron oxide pellets strengthened by CO2 treatment for use in basic oxygen steel making. ISIJ Int. 2009;49(2):210–219.
. Abdelrahim A. Recycling of steel plant by-products by cold bonded briquetting. University of Oulu; 2018.
. Bizhanov A, Chizhikova V. Agglomeration in Metallurgy [Internet]. Gewerbestrasse: Springer; 2020. 454 p. Disponible en: http://www.springer.com/series/11054
. Kishore Das B, Mallick D. Briquetting of Iron Bearing Materials. National Institute of Technology Rourkela; 2015.
. Kumar DS, Sah R, Sekhar VR, Vishwanath SC, Sah R, Sekhar VR, et al. Development and use of mill scale briquettes in BOF. 2016;(April):1–6.
. Lohmeier L, Wollenberg R, Schröder HW. Investigation into the Hot Briquetting of Fine-Grained Residual Materials from Iron and Steel Production. Steel Res Int. 2020;91(12):1–10.
. Schütze WR. HBI - Hot Briquetting of Direct Reduced Iron. Technology and Status of Industrial Application. Köeppern. Hattingen; 2014 p. 15.
. Hoffman GE, M MJ. Method of producing a metallized briquette. EEUU; 2004.
. Meynerts U, Maurer M, Freitas Seabra Da Rocha SH, Wirtgen C. Briquetting of mill scale [Internet]. EEUU; 2013. p. 5. Disponible en: [40]. Ren T, Yang Q, Zhang W, Tang Z, Pan W, Zhang D, et al. Manufacturing method for cold-pressed pellets for steelmaking. China; 2017.
. Liu W, Yu H, Liu R. Method for producing high-strength pellets by using steel slag fine powder. China; 2022.
. Strüber G, Nouaille-Degorce G. Method of operating a pelletizing plant. Luxenburgo; 2018. p. 7.
. Dutta SK, Chokshi Y, Sompura N. Utilization of steel plants waste. Mater Sci Eng Int J. 2018;2(5):144–147.
. Kotraba NL, Holley CA. Direct reduction process and apparatus. Europa; 2003. p. 17.
. Xing ZX, Liu JS, Huang Z, Cheng GJ, Yang H, Xue XX. Research on the Enhanced Preparation Process for Pellets with Sea Sand Vanadium Titanomagnetite Smelting in the Blast Furnace. J Phys Conf Ser. 2022;2300(1):1–5.
. Zhang Y, Wu X, Niu H, Zhao M, Qing G, Zhao Z, et al. Study on Sinter Iron Ores and Titanium Ores Used in Pelletizing BT - Characterization of Minerals, Metals, and Materials 2021. En: Li J, Zhang M, Li B, Monteiro SN, Ikhmayies S, Kalay YE, et al., editores. Cham: Springer International Publishing; 2021. p. 155–163.
. Mostaghel S, Cramer MH, Hernandez-Avila VH. Process and Apparatus for Producing High-Manganese Steels. Mundial; 2016. p. 29.
. Sun H, Wang J, Dong X, Xue Q. A Literature Review Of Titanium Slag Metallurgical Processes. Metal Int. 2012;37(7):49–56. [49]. Tang J, Zhang Y, Chu MS, Xue XX. Preparation of oxidized pellets with high chromium vanadium-titanium magnetite. Dongbei Daxue XuebaoJournal Northeast Univ. 2013;34(4):545–550
. Baogui G. Coke-free ironmaking process for titanium-containing magnet placer. China; 2010.
. Longkui J, Wensun G, Wenchao C, Qingchun L, Yong C, Guijun L, et al. Method for carrying out liquid steel vanadium alloying by pelletizing by using vanadium iron fine powder. China; 2012.
. Lang S (Metso O, Haimi T (Metso O, Köpf M (Metso O. Circored Fine Ore Direct Reduction Plus DRI Smelting: Proven Technologies for the Transition Towards Green Steel. En: Fiseha Tesfaye, Lei Zhang, Donna Post Guillen, Ziqi Sun, Alafara Abdullahi Baba, Neale R. Neelameggham, Mingming Zhang DEV and SA, editor. REWAS 2022: Energy Technologies and CO2 Management (Volume II) [Internet]. Turku: Springer; 2022. p. 176. Disponible en: https://link.springer.com/book/10.1007/978-3-030-92559-8
. Huang X, Hwang JY. Novel Direct Steelmaking By Combining Microwave, Electric Arc, and Exothermal Heating Technologies. Vol. Final Tech, United StatesDepartmente of Energy. Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation’s economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There: Michigan Technological University; 2005 p. 158.
. Cavaliere P. Flash Ironmaking. En: Cavaliere P, editor. Hydrogen Assisted Direct Reduction of Iron Oxides [Internet]. Cham: Springer International Publishing; 2022. p. 339–57. Disponible en: https://doi.org/10.1007/978-3-030-98056-6_9[55]. Eron’ko SP, Gorbatyuk SM, Oshovskaya EV, Starodubtsev BI. A concept of micro-mill elaboration and development for low-quality burden and metal-containing wastes recycling. Ferr Metall Bull Sci Tech Econ Inf. 2019;75(9):1029–1036.
. Karbowniczek M. Electric Arc Furnace Steelmaking. Boca Raton: CRC Press, Taylor & Francis; 2022. 250 p.
. Huang G, Huang T, Mao P, Hu Z, Chen C, Chen G. Method adopting steel ladle casting residues and tailings for preparing high-aluminum slag modifier pellets and application thereof. China; 2016.
. Chen C, Huang G, Zhang H, Deng X, Hu Z. Slag foaming agent pellet and preparation and using method thereof. China; 2017.
. Schneider JC, Chorbajian E. LS-RIOR, a new ironmaking process utilizing low cost, high sulfur petroleum coke as reductant and energy source. Ironmak Proc Met Soc AIME U S [Internet]. el 1 de enero de 1984;43. Disponible en: https://www.osti.gov/biblio/6319014









