Propiedades y aplicaciones del Poli(óxido de etileno)

Contenido principal del artículo

Resumen

El poli(óxido de etileno) (POE), conocido también como poli(etilenglicol) (PEG), ha emergido como un polímero versátil, con una gran variedad de usos. En este sentido, el POE presenta una amplia gama de masas moleculares, permitiendo su adaptabilidad a distintas aplicaciones. Con su destacada biocompatibilidad, solubilidad en agua y baja reactividad, el POE ha despertado el interés científico y ha encontrado gran aplicabilidad en diversos campos, sobre todo en la biomedicina, donde se emplea en el desarrollo de nanoportadores específicos para células cancerosas y como componente clave en las vacunas basadas en ARNm, como las empleadas en la pandemia de COVID-19. El futuro del POE se presenta prometedor, con perspectivas científicas y económicas alentadoras. En este contexto, el presente artículo ofrece una revisión exhaustiva de las propiedades, esquemas de síntesis y aplicaciones más relevantes del POE, consolidando su importancia como un polímero fundamental en el campo de la biomedicina y sentando las bases para futuras investigaciones y avances tecnológicos.

Descargas

##plugins.themes.bootstrap3.displayStats.noStats##

Detalles del artículo

Sección
Artículos
Cómo citar
Propiedades y aplicaciones del Poli(óxido de etileno). (2024). Ciencia En Revolución, 8(24), 172-168. https://cienciaenrevolucion.com.ve/index.php/cienciaenrevolucion/article/view/69

Referencias

Rahman MR, Taib N-AAB, Bakri MKB, Taib SNL. Importance of sustainable polymers for modern society and development. Advances in Sustainable Polymer Composites. Elsevier; 2021. p. 1–35.

Riande E. Los polímeros y sus aplicaciones bajo una perspectiva científica e histórica. Anales de Química de la RSEQ; 2003, 2. p. 176–187.

Rasmussen SC. Revisiting the early history of synthetic polymers: Critiques and new insights. Ambix. 2018; p. 1–17. http://dx.doi.org/10.1080/00026980.2018.1512775.

Namazi H. Polymers in our daily life. BioImpacts. 2017;7(2):73–4. http://dx.doi.org/10.15171/bi.2017.09.

Percec V, Xiao Q. The legacy of Hermann Staudinger: Covalently linked macromolecules. Chem. 2020;6(11):2855–61. http://dx.doi.org/10.1016/j.chempr.2020.10.007.

Naka K. Monomers, oligomers, polymers, and macromolecules (overview). Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 1–6.

Gilbert M. Plastics Materials: Introduction and historical development. Brydson’s Plastics Materials: Eighth Edition 2017. P. 1–18, doi:10.1016/B978-0-323-35824-8.00001-3.

Lutz J-F, Börner HG. Modern trends in polymer bioconjugates design. Prog. Polym. Sci. 2008;33(1):1–39. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.005.

Levison PR. ION EXCHANGE | Isolation of Biopolymers. Encyclopedia of Analytical Science. Elsevier; Second Edition; 2005. p. 481–484. doi:10.1016/B0-12-369397-7/00287-9.

Feldman D. Polymer history. Des. Monomers Polym. 2008;11(1):1–15. http://dx.doi.org/10.1163/156855508x292383

Bailey FE Jr, Koleske JV. Introduction. Poly (ethylene Oxide). Elsevier; 1976. p. 1–4.

Elias HG. Introduction. Macromolecules. Boston, MA: Springer US; 1977. p. 3–36, doi:10.1007/978-1-4615-7364-7_1.

Back DM.; Schmitt RL. Ethylene Oxide Polymers. Encyclopedia of Polymer Science and Technology; Mark, H., Ed.; Wiley-Interscience, 2004; Vol. 9.

Shen H.; Wang G. Ethylene Oxide Polymers: Synthesis, Modification, Topology, and Applications. Encyclopedia of Polymer Science and Technology; Wiley, 2018. p. 1–44.

Harris JM. Introduction to biotechnical and biomedical applications of poly(ethylene glycol). Poly(Ethylene Glycol) Chemistry. Boston, MA: Springer US; 1992. p. 1–14. doi:10.1007/978-1-4899-0703-5_1.

Dickerson TJ, Reed NN, Janda KD. Soluble polymers as catalyst and reagent platforms: Liquid-phase methodologies. Polymeric Materials in Organic Synthesis and Catalysis. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA; 2005. p. 241–76. doi:10.1002/3527601856.CH5.

Car A. Polyethylene Oxide. Encyclopedia of Membranes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 1–2. doi:10.1007/978-3-642-40872-4_480-2.

Sedlák M. Recent advances in chemistry and applications of substituted poly(ethylene glycol)s. Collect. Czechoslov. Chem. Commun. 2005;70(3):269–91. http://dx.doi.org/10.1135/cccc20050269.

D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert. Opin. Drug. Deliv. 2016;13(9):1257–75. http://dx.doi.org/10.1080/17425247.2016.1182485.

Dimitrov I, Tsvetanov CB. High-molecular-weight poly(ethylene oxide). Polymer Science: A Comprehensive Reference. Elsevier; 2012. p. 551–69, doi:10.1016/B978-0-444-53349-4.00100-X.

Tsvetanov CB, Dimitrov I, Doytcheva M, Petrova E, Dotcheva D, Stamenova R. Poly(ethylene oxide) Homologs: From Oligomers to Polymer Networks. ACS Symposium Series. Washington, DC: American Chemical Society; 1998. p. 236–54, doi:10.1021/bk-1998-0696.ch018.

Saunders KJ. Basic Concepts. Organic. Polymer. Chemistry. Dordrecht: Springer Netherlands; 1988. p. 1–45. doi:10.1007/978-94-009-1195-6_1.

Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, et al. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation. Chem. Rev. 2016;116(4):2170–243. http://dx.doi.org/10.1021/acs.chemrev.5b00441

Zalipsky S, Technology L, Court H, Park M, August CR. Functionalized Poly(Ethy1ene Glycol) for Preparation of Biologically Relevant Conjugates. 1995 p. 150–165.

Li J, Kao WJ. Synthesis of Polyethylene Glycol (PEG) Derivatives and PEGylated - Peptide Biopolymer Conjugates. Biomacromolecules 2003, 4, p. 1055–1067. doi:10.1021/bm034069l.

Thompson MS, Vadala TP, Vadala ML, Lin Y, Riffle JS. Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers. Polymer (Guildf). 2008;49(2):345–73. http://dx.doi.org/10.1016/j.polymer.2007.10.029

Hu S, Zhao J, Zhang G, Schlaad H. Macromolecular architectures through organocatalysis. Prog. Polym. Sci. 2017;74:34–77. http://dx.doi.org/10.1016/j.progpolymsci.2017.07.002

Bückmann AF, Morr M, Johansson G. Functionalization of Poly(Ethylene Glycol) and Monomethoxy-Poly(Ethylene Glycol). Die Makromolekulare Chemie 1981, 182, p. 1379–1384, doi:10.1002/MACP.1981.021820509.

Lapienis G, Penczek S. Preparation of monomethyl ethers of poly(ethylene glycol)s free of the poly(ethylene glycol). J. Bioact. Compat. Polym. 2001;16(3):206–20. http://dx.doi.org/10.1106/v7g8-r36h-bx1r-647g.

Raycraft BM, MacDonald JP, McIntosh JT, Shaver MP, Gillies ER. Post-polymerization functionalization of poly(ethylene oxide)–poly(β-6-heptenolactone) diblock copolymers to tune properties and self-assembly. Polym. Chem. 2017;8(3):557–67. http://dx.doi.org/10.1039/c6py01785a

Martinelli M, Froimowicz P, Calderon M, Strumia YM. Materiales Poliméricos Funcionalizados. Parte I: Síntesis y Polimerización de Monómeros Funcionalizados. Revista Iberoamericana de Polímeros 2003, 4, p. 30–47.

Narendra C. Functionalized Polymers. 1995; ISBN 9780367420611.

Fink JK. Functional Synthetic Polymers. 2019; ISBN 9781119593126.

Bultema LA, Huang X, Brauer DD, Theato P. Polymer Functionalization. En: Polymers and Polymeric Composites: A Reference Series. Cham: Springer International Publishing; 2019. p. 53–103.

Delfi M, Ghomi M, Zarrabi A, Mohammadinejad R, Taraghdari ZB, Ashrafizadeh M, et al. Functionalization of polymers and nanomaterials for biomedical applications: Antimicrobial platforms and drug carriers. Prosthesis.2020;2(2):117–39. http://dx.doi.org/10.3390/prosthesis2020012

Milton H, J, Zalipsky S. Introduction to Chemistry and Biological Applications of Poly (Ethylene Glycol); 1997.

Harris JM, Struck EC, Case MG, Paley MS, Yalpani M, Van Alstine JM, et al. Synthesis and characterization of poly(ethylene glycol) derivatives. J. Polym. Sci. Polym. Chem. Ed. 1984;22(2):341–52. http://dx.doi.org/10.1002/pol.1984.170220207

Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM. Recent advances in PEG-PLA block copolymer nanoparticles. Int. J. Nanomedicine. 2010;5:1057–65. http://dx.doi.org/10.2147/IJN.S14912.

Nguyen TT, Dung Nguyen TT, Vo TK, Tran N-M-A, Nguyen MK, Van Vo T, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother. 2021;143(112117):112117. http://dx.doi.org/10.1016/j.biopha.2021.112117

Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug. Deliv. Rev. 2020;156:80–118. http://dx.doi.org/10.1016/j.addr.2020.09.009

Contreras, J.; Medina, D.; López-Carrasquero, F. Síntesis y Polimerización de Bismacromonómeros de Polietilenglicol. Avances en Quimica. 2014, 9, 107–114.

Wang DK, Varanasi S, Strounina E, Hill DJT, Symons AL, Whittaker AK, et al. Synthesis and characterization of a POSS-PEG macromonomer and POSS-PEG-PLA hydrogels for periodontal applications. Biomacromolecules. 2014;15(2):666–79. http://dx.doi.org/10.1021/bm401728p

Ederle Y, Isel F, Grutke S, Lutz PJ. Anionic polymerization and copolymerization of macromonomers: Kinetics, structure control. Macromol. Symp. 1998;132(1):197–206. http://dx.doi.org/10.1002/masy.19981320119.

Clapper JD, Skeie JM, Mullins RF, Guymon CA. Development and characterization of photopolymerizable biodegradable materials from PEG–PLA–PEG block macromonomers. Polymer (Guildf). 2007;48(22):6554–64. http://dx.doi.org/10.1016/j.polymer.2007.08.023

Ito K, Kawaguchi S. Poly(macromonomers): Homo- and Copolymerization. Branched Polymers I. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 129–78.

Chang Y, Kwon YC, Lee SC, Kim C. Amphiphilic Linear PEO-Dendritic Carbosilane Block Copolymers. Macromolecules. 2000, 33, p. 4496–4500, doi:10.1021/ma9908853.

Chang Y, Kim C. Synthesis and photophysical characterization of amphiphilic dendritic-linear-dendritic block copolymers. J. Polym. Sci. A. Polym. Chem. 2001;39(6):918–26. http://dx.doi.org/10.1002/1099-0518(20010315)39:6<918::aid-pola1066>3.0.co;2-p.

Namazi H, Adeli M. Synthesis of barbell-like triblock copolymers, dendritic triazine-block-poly(ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors. Polymer (Guildf). 2005;46(24):10788–99. http://dx.doi.org/10.1016/j.polymer.2005.09.020

Pozza GM-E, Harris H, Barthel MJ, Vitz J, Schubert US, Lutz PJ. Macromonomers as well-defined building blocks in the synthesis of hybrid octafunctional star-shaped poly(ethylene oxide)s. Macromol. Chem. Phys. 2012;213(20):2181–91. http://dx.doi.org/10.1002/macp.201200292.

Li F, Li T, Cao W, Wang L, Xu H. Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment. Biomaterials. 2017;133:208–18. http://dx.doi.org/10.1016/j.biomaterials.2017.04.032.

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7(8):573–84. http://dx.doi.org/10.1038/nrc2167.

Abu-Surrah AS, Kettunen M. Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem. 2006;13(11):1337–57. http://dx.doi.org/10.2174/092986706776872970.

Read B. Mechanical relaxation in some oxide polymers. Polymer (Guildf). 1962;3:529–42. http://dx.doi.org/10.1016/0032-3861(62)90100-3.

Wang H, Keum JK, Hiltner A, Baer E. Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability. Macromolecules. 2009;42(18):7055–66. http://dx.doi.org/10.1021/ma901379f.

Cheng SZD, Barley JS, Von Meerwall ED. Self-diffusion of poly (ethylene oxide) fractions and its influence on the crystalline texture. J. Polym. Sci. B. Polym. Phys. 1991;29(5):515–25. http://dx.doi.org/10.1002/polb.1991.090290501.

Thomas A, Müller SS, Frey H. Beyond Poly(Ethylene Glycol): Linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules. 2014, 15, 1935–1954.

Paberit R, Rilby E, Göhl J, Swenson J, Refaa Z, Johansson P, et al. Cycling stability of poly(ethylene glycol) of six molecular weights: Influence of thermal conditions for energy applications. Appl. Energy. Mater. 2020;3(11):10578–89. http://dx.doi.org/10.1021/acsaem.0c01621.

Beech DR, Booth C. Thermodynamic melting point of poly(ethylene oxide). J. Polym. Sci. B. 1970;8(10):731–4. http://dx.doi.org/10.1002/pol.1970.110081011.

Qian Z, Cao Z, Galuska L, Zhang S, Xu J, Gu X. Glass transition phenomenon for conjugated polymers. Macromol. Chem. Phys. 2019;220(11):1900062. http://dx.doi.org/10.1002/macp.201900062.

Faucher JA, Koleske JV, Santee ER Jr, Stratta JJ, Wilson CW III. Glass transitions of ethylene oxide polymers. J. App.l Phys. 1966;37(11):3962–4. http://dx.doi.org/10.1063/1.1707961.

Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J. Control Release 2012;161(2):461–72. http://dx.doi.org/10.1016/j.jconrel.2011.10.037.

Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998;394(6692):456–8. http://dx.doi.org/10.1038/28818.

Song JY, Wang YY, Wan CC. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources. 1999;77(2):183–97. http://dx.doi.org/10.1016/s0378-7753(98)00193-1

Binks AE, Sharples A. Electrical conduction in olefin oxide polymers. J. Polym. Sci. A-2 Polym. Phys. 1968;6(2):407–20. http://dx.doi.org/10.1002/pol.1968.160060206.

Bailey FE, Koleske JV. Properties Poly(Ethyelene Oxide). In Poly (ethylene Oxide); Elsevier, 1976: 105–149.

Moreno M, Quijada R, Santa Ana MA, Benavente E, Gomez-Romero P, González G. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta. 2011;58:112–8. http://dx.doi.org/10.1016/j.electacta.2011.08.096.

Wright PV. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 1975;7(5):319–27. http://dx.doi.org/10.1002/pi.4980070505.

Armand M. Polymer solid electrolytes - an overview. Solid State Ion. 1983;9–10:745–54. http://dx.doi.org/10.1016/0167-2738(83)90083-8.

Kim BS, Porter RS. Uniaxial draw of poly(ethylene oxide) by solid-state extrusion. Macromolecules. 1985;18(6):1214–7. http://dx.doi.org/10.1021/ma00148a029.

Mitchell DJ, Porter RS. Characterization of poly(ethylene oxide) drawn by solid-state extrusion. Macromolecules. 1985;18(6):1218–21. http://dx.doi.org/10.1021/ma00148a030.

Schmitt B, Alexandre E, Boudjema K, Lutz PJ. Poly(Ethylene Oxide) Hydrogels as Semi-Permeable Membranes for an Artificial Pancreas. Macromol. Biosci. 2002,(2):341–351, http://dx.doi.org/10.1002/1616-5195(200209)2:7<341::AID-MABI341>3.0.CO;2-4.

Zalipsky S, Harris JM. Introduction to Chemistry and Biological Applications of Poly(ethylene glycol). ACS Symposium Series. Washington, DC: American Chemical Society; 1997. p. 1–13.

Contreras J, Medina D, López-Carrasquero F. Síntesis y Polimerización de Bis-Macromonómeros de Poli(ε-Caprolactona). Avances en Quimica. 2016, (11): 77–85.

Jevševar S, Kunstelj M. Half-Life Extension through PEGylation. En: Therapeutic Proteins. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 39–61. http://dx.doi.org/10.1002/BIOT.200900218.

Sharma PK, Reilly MJ, Bhatia SK, Sakhitab N, Archambault JD, Bhatia SR. Effect of pharmaceuticals on thermoreversible gelation of PEO-PPO-PEO copolymers. Colloids Surf B Biointerfaces 2008;63(2):229–35. http://dx.doi.org/10.1016/j.colsurfb.2007.12.009.

Bailon P, Won C-Y. PEG-modified biopharmaceuticals. Expert Opin. Drug. Deliv. 2009;6(1):1–16. http://dx.doi.org/10.1517/17425240802650568

Mayolo-Deloisa KP, Rito-Palomares M. Proteínas PEGiladas: Producción, Purificación y Aplicaciones. Rev. Mex. Ing. Quim. 2010, (9): 17–27.

Pelegri-O’Day EM, Lin E-W, Maynard HD. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 2014;136(41):14323–32. http://dx.doi.org/10.1021/ja504390x

Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, et al. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug. Deliv. Rev. 2022;180(114079):114079. http://dx.doi.org/10.1016/j.addr.2021.114079.

Molineux G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev. 2002;28:13–6. http://dx.doi.org/10.1016/s0305-7372(02)80004-4.

Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 1977;252(11):3582–6. http://dx.doi.org/10.1016/s0021-9258(17)40292-4.

Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug. Deliv. Rev. 2003;55(3):403–19. http://dx.doi.org/10.1016/s0169-409x(02)00226-0.

Newland B, Taplan C, Pette D, Friedrichs J, Steinhart M, Wang W, et al. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale. 2018;10(18):8413–21. http://dx.doi.org/10.1039/c8nr00603b.

Sánchez-Cano C, Carril M. Recent developments in the design of non-biofouling coatings for nanoparticles and surfaces. Int. J. Mol. Sci. 2020;21(3):1007. http://dx.doi.org/10.3390/ijms21031007.

Carreño JM, Singh G, Tcheou J, Srivastava K, Gleason C, Muramatsu H, et al. mRNA-1273 but not BNT162b2 induces antibodies against polyethylene glycol (PEG) contained in mRNA-based vaccine formulations. bioRxiv. 2022. http://dx.doi.org/10.1101/2022.04.15.22273914.

Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, et al. A comprehensive review of mRNA vaccines. Int. J. Mol. Sci. 2023;24(3). http://dx.doi.org/10.3390/ijms24032700.

Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug. Discov. Today. 2005;10(21):1451–8. http://dx.doi.org/10.1016/S1359-6446(05)03575-0.

Dimitrov M, Lambov N. Study of Verapamil hydrochloride release from compressed hydrophilic Polyox-Wsr tablets. Int. J .Pharm. 1999;189(1):105–11. http://dx.doi.org/10.1016/s0378-5173(99)00242-2

Kim CJ. Drug release from compressed hydrophilic POLYOX-WSR tablets. J. Pharm. Sci. 1995;84(3):303–6. http://dx.doi.org/10.1002/jps.2600840308.

Kim H, Fassihi R. Application of binary polymer system in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J. Pharm. Sci. 1997;86(3):323–8. http://dx.doi.org/10.1021/js960307p.

Apicella A, Cappello B, Del Nobile MA, La Rotonda MI, Mensitieri G, Nicolais L. Poly(Ethylene Oxide) (PEO) and Different Molecular Weight PEO Blends Monolithic Devices for Drug Release. Biomaterials 1993, 14, 83–90. http://dx.doi.org/10.1016/0142-9612(93)90215-N.

Stylianopoulos T, Poh M-Z, Insin N, Bawendi MG, Fukumura D, Munn LL, et al. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J. 2010;99(5):1342–9. http://dx.doi.org/10.1016/j.bpj.2010.06.016.

DiPiro JT, Michael KA, Clark BA, Dickson P, Vallner JJ, Bowden TA Jr. Absorption of polyethylene glycol after administration of a PEG-electrolyte lavage solution. Clin. Pharm. 1986;5(2):153–5.

D’Amelio FS, Mirhom YW, Dreyer AL. Cosmetics and Toiletries Manufacture Worldwide; Aston Publishing group, UK, 2003.

Bottenberg P, Cleymaet R, De Muynck C, Remon JP, Coomans D, Michotte Y, Slop D. Development and Testing of Bioadhesive, Fluoride-Containing Slow-Release Tablets for Oral Use. Journal of Pharmacy and Pharmacology. 1991, (43): 457–464. http://dx.doi.org/10.1111/J.2042-7158.1991.TB03514.X.

Di Colo G, Burgalassi S, Chetoni P, Fiaschi MP, Zambito Y, Saettone MF. Relevance of polymer molecular weight to the in vitro/in vivo performances of ocular inserts based on poly(ethylene oxide). Int. J. Pharm. 2001;220(1–2):169–77. http://dx.doi.org/10.1016/s0378-5173(01)00668-8.

Dimitrova E, Bogdanova S, Minkov E, Manolova N, Raschkov I, Koleva M, et al. High-molecular weight polyoxyethylene as an additive in ophthalmic solutions. Int. J. Pharm. 1993;93(1–3):21–6. http://dx.doi.org/10.1016/0378-5173(93)90160-h.

Rosenthal M, Cohen H. U.S. 2,978,812: Denture Fixatives 1961.

Gaudreault R, van de Ven TGM, Whitehead MA. Mechanisms of flocculation with poly(ethylene oxide) and novel cofactors. Colloids Surf A Physicochem Eng. Asp. 2005;268(1–3):131–46. http://dx.doi.org/10.1016/j.colsurfa.2005.04.044.

Gibbs A, Pelton R, Cong R. The influence of dextran derivatives on polyethylene oxide and polyacrylamide-induced calcium carbonate flocculation and floc strength. Colloids Surf A Physicochem Eng. Asp. 1999;159(1):31–45. http://dx.doi.org/10.1016/s0927-7757(99)00160-0

Stack KR, Dunn LA, Roberts NK. Study of the interaction between poly(ethylene oxide) and phenol-formaldehyde resin. Colloids Surf. 1991;61:205–18. http://dx.doi.org/10.1016/0166-6622(91)80310-k.

Barnes A, Coghill R, Thurley D. The Use of Retention Aids in Newsprint Manufacture. APPITA. 1989, 42: 373–375.

Wu MR, Paris J, van de Ven TGM. Flocculation of papermaking fines by poly(ethylene oxide) and various cofactors: Effects of PEO entanglement, salt and fines properties. Colloids Surf A Physicochem Eng. Asp. 2007;303(3):211–8. http://dx.doi.org/10.1016/j.colsurfa.2007.03.054.

Kara A, Uzun L, Beşirli N, Denizli A. Poly(Ethylene Glycol Dimethacrylate-n-Vinyl Imidazole) Beads for Heavy Metal Removal. J. Hazard Mater. 2004, 106: 93–99, http://dx.doi.org/10.1016/J.JHAZMAT.2003.08.016.

Cowan ME, Garner C, Hester RD, McCormick CL. Water-soluble polymers. LXXXIII. Correlation of experimentally determined drag reduction efficiency and extensional viscosity of high molecular weight polymers in dilute aqueous solution. J. Appl. Polym. Sci. 2001;82(5):1222–31. http://dx.doi.org/10.1002/app.1956.

Supcoe R, Evans A. US Department of Navy U.S. 5,521,242: High Concentration Slurry-Formulation and Application 1996.

Supcoe R, Moran Jr F. US Departament of Navy U.S. 5,488,076: Water Ablative Coating for Drag Reduction Applications 1996.

Quartarone E. PEO-based composite polymer electrolytes. Solid State Ion. 1998;110(1–2):1–14. http://dx.doi.org/10.1016/s0167-2738(98)00114-3

Sequeira CAC, Santos DMF. Introduction to polymer electrolyte materials. Polymer Electrolytes. 2010. p. 3–61. http://dx.doi.org/10.1533/9781845699772.1.3.

Xue Z, He D, Xie X. Poly(Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries. J. Mater Chem. A Mater. 2015, 3, 19218–19253, http://dx.doi.org/10.1039/C5TA03471J.

Bruce PG, Vincent CA. Polymer Electrolytes. Journal of the Chemical Society, Faraday Transactions. 1993, 89, 3187–3203. http://dx.doi.org/10.1039/FT9938903187.

Stephan AM. Review on Gel Polymer Electrolytes for Lithium Batteries. Eur. Polym. J. 2006, 42, 21–42. http://dx.doi.org/10.1016/J.EURPOLYMJ.2005.09.017.

Liu Z, Wang J, Yue X, Xie Z, You H, Wang J, et al. A flexible Li2SnO3-coupled PEO-based single-ion conducting composite solid-state electrolyte for highly-stable Li metal batteries. J. Alloys Compd. 2022;911(165138):165138. http://dx.doi.org/10.1016/j.jallcom.2022.165138.

Lee J, Howell T, Rottmayer M, Boeckl J, Huang H. Free-standing PEO/LiTFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries. J. Electrochem. Soc. 2019;166(2):A416–22. http://dx.doi.org/10.1149/2.1321902jes.

Armand M, Bruce P, Forsyth M. Scrosati, B.; Wieczorek, W. Polymer Electrolytes. In Ch. 1, Energy Materials; 2011: 1–31. ISBN 9780470977798.

Song J, Xu Y, Zhou Y, Wang P, Feng H, Yang J, et al. Incorporating 2D γ-Al2O3 nanosheets into the flexible PEO-based solid electrolyte for lithium metal batteries. Electrochim Acta. 2023;437(141504):141504. http://dx.doi.org/10.1016/j.electacta.2022.141504.

Ajay Kumar P, Mallikarjun A, Mettu MR, Anand Kumar Sagar P, Thirmal C, Jaipal Reddy M, Siva Kumar J. Investigation of Flexible Electrochemical Storage with Li+/PVdF-HFP/PEO Blend. Polymer-Plastics Technology and Materials. 2023, 1–18. http://dx.doi.org/10.1080/25740881.2023.2204904.

Lv M, Luo C, Li J, Zhang Y, Zeng Q, Huang N, Wang S, Zheng Y, Liu W, Ye L. Quasi-Solid-State Flexible Zn–Air Batteries with a Hydrophilic-Treated Co@NCNTs Array Electrocatalyst and PEO–PANa Electrolyte. ACS Mater Lett. 2023, 5: 744–752. http://dx.doi.org/10.1021/acsmaterialslett.2c01089.

Jandera P. Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim. Acta. 2011;692(1–2):1–25. http://dx.doi.org/10.1016/j.aca.2011.02.047.

Wallingford RA. Oligomeric separation of ionic and nonionic ethoxylated polymers by capillary gel electrophoresis. Anal Chem. 1996;68(15):2541–2548. http://dx.doi.org/10.1021/ac951179c.

Šatínský D, Brabcová I, Maroušková A, Chocholouš P, Solich P. Green Chromatography Separation of Analytes of Greatly Differing Properties Using a Polyethylene Glycol Stationary Phase and a Low-Toxic Water-Based Mobile Phase. Anal Bioanal Chem. 2013, 405: 6105–6115. http://dx.doi.org/10.1007/S00216-013-7003-1/METRICS.

Mansour FR, Zhou L, Danielson ND. Applications of poly(ethylene)glycol (PEG) in separation science. Chromatographia. 2015;78(23–24):1427–42. http://dx.doi.org/10.1007/s10337-015-2983-y.

Huang K, Han X, Zhang X, Armstrong DW. PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal. Bioanal. Chem. 2007;389(7–8):2265–75. http://dx.doi.org/10.1007/s00216-007-1625-0.

Schulze M, Belder D. Poly(ethylene glycol)-coated microfluidic devices for chip electrophoresis. Electrophoresis. 2012;33(2):370–8. http://dx.doi.org/10.1002/elps.201100401.

Zeng C, Huang M, Zhao H, Zhou J, Li J. Solution and diffusion properties of cyclohexane, cyclohexanol, and cyclohexanone in poly(ethylene glycol) by inverse gas chromatography. J. Appl. Polym. Sci. . 2012;123(1):124–34. http://dx.doi.org/10.1002/app.34447.

Mori S, Barth HG. Size Exclusion Chromatography. 1999. http://dx.doi.org/10.1007/978-3-662-03910-6.

Okada T. Secondary equilibrium size-exclusion chromatography of ions with polymeric mobile phase additives. J. Chromatogr A. 1991;586(2):277–81. http://dx.doi.org/10.1016/0021-9673(91)85133-z

Poole C. Gas Chromatography; 2nd ed.; Elsevier, 2021; ISBN 9780128206775.

Yancey JA. Liquid phases used in packed gas chromatographic columns. Part II. Use of liquid phases which are not polysiloxanes. J. Chromatogr. Sci. 1985;23(8):370–7. http://dx.doi.org/10.1093/chromsci/23.8.370.

Lux JA, Yin H, Schomburg G. Influence of polymer coating of capillary surfaces on migration behavior in micellar electrokinetic capillary chromatography. J. High Resolut Chromatogr. 1990;13(2):145–7. http://dx.doi.org/10.1002/jhrc.1240130215.

Bruin GJM, Chang JP, Kuhlman RH, Zegers K, Kraak JC, Poppe H. Capillary zone electrophoretic separations of proteins in polyethylene glycol-modified capillaries. J. Chromatogr. A. 1989;471:429–36http://dx.doi.org/10.1016/s0021-9673(00)94190-6.

Bailey FE, Koleske JV. Polymerization of Ethylene Oxide. Poly (ethylene Oxide) 1976, 3: 13–28. http://dx.doi.org/10.1016/B978-0-12-073250-0.50007-6.

Davidson R, Sittig M. Handbook of Water-Soluble Gums and Resins; McGraw-Hill, 1980. ISBN 0070154716.

Hadju SI. A note on the history of Carbowax in cytology. Acta Cytol. 1983;27(2):204–6.

Alderson S, Down JL, Maines CA, Williams RS, Young GS. Potential substitutes for discontinued poly(vinyl acetate) resins used in conservation. J. Amer. Inst. Conserv. 2019;58(3):158–79. http://dx.doi.org/10.1080/01971360.2019.1589940.

Grand View Research Polyethylene Glycol Market Size, Share & Trends Analysis Report By Application (Medical, Personal Care, Industrial, Others), By Region, And Segment Forecasts, 2023 - 2030; San Francisco, California, USA, 2023.

Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug. Discov. 2003;2(3):214–21. http://dx.doi.org/10.1038/nrd1033

Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J. Sep. Sci. 2020;43(9–10):1978–97. http://dx.doi.org/10.1002/jssc.201901340.

Sanchez Armengol E, Unterweger A, Laffleur F. PEGylated drug delivery systems in the pharmaceutical field: past, present and future perspective. Drug. Dev. Ind. Pharm. 2022;48(4):129–39. http://dx.doi.org/10.1080/03639045.2022.2101062.

Akbari E, Mousazadeh H, Hanifehpour Y, Mostafavi E, Gorabi AM, Nejati K, et al. Co-loading of cisplatin and methotrexate in nanoparticle-based PCL-PEG system enhances lung cancer chemotherapy effects. J. Cluster Sci. 2022;33(4):1751–62. http://dx.doi.org/10.1007/s10876-021-02101-9.