Restricción del volumen del suelo, efecto sobre la fotosíntesis en cacao
Contenido principal del artículo
Resumen
El cultivo de plantas bajo condiciones de invernadero, generalmente se hace en macetas de volumen reducido, durante tiempos prolongados, lo que genera un estrés abiótico que puede afectar la capacidad fotosintética, el crecimiento y el desarrollo vegetal. Especies de interés agronómico muestran que, al ser cultivadas en un volumen de maceta pequeña, ocurre una limitación en el crecimiento radicular. El objetivo fue evaluar la regulación de tasa fotosintética (A) y el crecimiento en plántulas de cacao cultivadas en diferentes volúmenes de suelo durante 5 meses: Pequeño (P; 2 L), Mediano (M; 8 L) y Grande (G; 11 L); evaluando parámetros de intercambio gaseoso, fotoquímicos, y de crecimiento. Se obtuvo una reducción de A, fotosíntesis diurna integrada (AD) y mantenimiento de la respiración nocturna (RdN) en P, sugiriendo una posible inhibición de A por retroalimentación negativa y una alteración en el balance de carbono. La reducción en peso seco total, medidas alométricas y crecimiento sugieren una relación entre el crecimiento y el desempeño fisiológico. El tratamiento P, produjo una limitación en el crecimiento radicular, que alteró la relación fuente-sumidero, ocasionando la reducción de la respuesta fisiológica y de crecimiento. Se concluyó que, para el cacao estudiado, los volúmenes de maceta más adecuados son los G y M.
Descargas
Detalles del artículo
Referencias
Fitter A. Characteristics and functions of root systems. En: Waisel Y, Eshel A, Kafkafi U. Plant Roots: The Hidden Half. New York. Marcel Dekker, 3, 15-32, 2002.
Peterson T, Reinsel M Krizek D. Tomato (Lycopersicon esculentum Mill.) Plant response to root restriction. Root respiration and ethylene generation. Exp Bot. 1991. 42: 1241-1249.
Robbins N. Pharr D. Effect of restricted root growth on carbohydrate metabolism and whole plant growth of Cucumis sativus L. Plant Physiol. 1998. 87: 409-413.
Taiz L. Zeiger E. Plant Physiology. EE.UU. Board, 5, 11-99,2010.
Thomas R. Strain B. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol. 1991, 96, 627-634.
Whiley A, Searle C, Schaffer B Wolstenholme B. Cool orchard temperatures or growing trees in containers can inhibit leaf gas exchange of avocado and mango. J. Am. Soc. Hortic. Sci. 1999. 124, 46-51.
Ronchi C, Damatta F, Batista K, Moraes G, Loureiro M Ducatti C. Growth and photosynthetic down-regulation in Coffea arabica in response to restricted root volume. Funct. Plant Biol. 2006, 33, 1013-1023.
NeSmith D Duval J. The effect of container size. Hort. Technol. 1998. 8(4), 495-498.
Arp B Drake B. Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated CO2. Plant Cell. Environ. 1991. 14, 1004-1008.
Ziska L, Hogan K, Smith A Drake B. Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide. Oceol. 1991. 86,383-389, 1991.
Barrett D y Gifford R. Acclimation of photosynthesis and growth by cotton to elevated CO2: interactions with severe phosphate deficiency and restricted rooting volume. Aust. J. Plant Physiol. 1995. 22,955-963.
DaMatta F. Drought as a multidimensional stress affecting photosynthesis in tropical tree crops. Advan. Plant Physiol. 2003. 5, 227-265.
Herold A McNeil P. Restoration of photosynthesis in pot-bound tobacco plants. J. Exp. Bot. 1979. 30, 1187-1194.
Zaharah S. Razi I. Growth, stomata aperture, biochemical changes and branch anatomy in mango (Mangifera indica) cv. Chokanan in response to root restriction and water stress. Sci. Hortic.- Amsterdam. 2009. 123, 58-67.
Krizek D, Carmi A, Mirecki R, Snyder F Bruce J. Comparative effects of soil moisture stress and restricted root zone volume on morphogenetic and physiological responses of soybean (Glycine max L.). J. Expt. Bot. 1985. 36,25-38.
Carmin A, Hesketh J, Enos W Peters D. Interrelationships between shoot growth and photosynthesis as affected by root growth restriction. Photosynthetica. 1983. 17,240-245.
NeSmith D, Bridges D Barbour J. Bell pepper responses to root restriction. J. Plant. Nutr. 1992. 15: 2763- 2776.
Mataa M Tominaga S. Effects of root restriction on the tree development in ponkan mandarin (Citrus reticulata B). J. Amer. Soc. Hort. Sci. 1998. 123(4), 651-655.
Shi K, Ding X, Dong D, Zhou Y, Yu J. Root restriction induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Sci. Hortic. -Amsterdam. 2008. 117, 197-202.
Van Iersel M. Root restriction effects on growth and development of salvia (Salvia splendens). Hortscience. 1997. 32:1186-1190.
Nishisawa T, Saito K. Effects of rooting volume restriction on the growth and carbohydrate concentration in tomato plants. J. Amer. Soc. Sct. 1998. 123(4):581-585.
Weston L. Effect of flat cell size, transplant age, and production site on growth and yield of pepper transplants. Hortscience. 1988. 23: 709-711.
Liu A, Latimer J. Root cell volume in the planter flat affects watermelon seedling development and fruit yield. Hortscience. 1995. 30: 242-246.
Peterson C, Klepper B, Pumphrey F, Rickman R. Restricted rooting decreases tillering and growth of winter wheat. Agron J. 1984. 76: 861-3.
Kemble J, Davis J, Gardner R, Sanders D. Root cell volume affects growth of compact-growth-habit tomato transplants. Hortscience. 1994. 29: 261- 262.
Motamayor J, Risterucci A, López P, Ortiz C, Moreno A, Lanaud C. Cacao domestication. The origin of the cacao cultivated by the Mayas. Heredity. 2002. 89: 380-386.
Almeida A, Valle R. Ecophysiology of the cacao tree. Braz J. Plant Physiol. 2008. 9: 425-448.
International Cocoa Organization (ICCO). Annual report. Londres, Inglaterra. 2020.
Nair KP. Cocoa (Theobroma cacao L.). Tree crops: harvesting cash from the word´s important cash crops. 2021. pp. 153–213. https://doi.org/10.1007/978-3- 030-62140-7_5.
Angulo Villacorta CD, Mathios Flores MA, Racchumi García A, Bardales-Lozano RM, Montejo DA. Crecimiento de plántulas de cacao (Theobroma cacao) en vivero, usando diferentes volúmenes de sustrato. Manglar. 2021. 18(3): 261-266.
Rundel P y Jarrel W. Water in the environment. En: Pearcy, R.W., Ehleringer, J., Mooney, H.A., Rundel, P.W. Plant Physiological Ecology: Fields, methods and instrumentation. pp: 29-56. Chapman & Hall, primer edition. London, England. 1989
Farquhar G y Von Caemmerer S. Modeling of photosynthetic responses to environmental conditions. En: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. Encyclopedia of Plant Physiology. Berlin, Alemania. Springer-Verla, 549-587, 1982.
Jacob J, Lawlor D. Stomatal and mesophyll limitations of photosynthesis in phosphate deficit sunflower, maize and wheat plants. J. Exp. Bot. 1991. 42: 1003-1011.
Genty B, Briantais J, Baker N. The relations between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence. Biochem. Bioph. 1989. 990: 87-92.
Krall J, Edwards E. Relationship between photosystem II activity and CO2 fixation in leaves. Plant. Physiol. 1992. 86: 180-187.
Bruinsma J. The quantitative analysis of chlorophylls a and b in plants
extracts. Photochem. Photobiol. 1963. 2: 241-249.
Bradford M. A rapid and sensitive method for a quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annal. Biochem. 1976. 72: 248-254.
Chiariello N, Mooney A, Williams K. Growth, carbon allocation and cost of plant tissues. En: Pearcy, R., Ehlenringer, J., Mooney, H., Rundel, P. Plant Physiol Ecol. 1989. pp: 327-365. Editions Chapman & Hall. London, England.
Jaimez R, Tezara W, Coronel I, Urich R. Ecofisiología del cacao (Theobroma cacao) su manejo en el sistema agroforestal. Sugerencias para su manejo en Venezuela. Rev. For. Venez. 2008. 52(2): 253-258.
De Almeida J. Respuestas ecofisiológicas de cacao (Theobroma cacao L.) a diferentes intensidades lumínicas. Tesis de Pregrado. Facultad de Ciencias. Universidad Central de Venezuela. pp: 7. 2012.
Gomes S, Kozlowski T. Effects of temperature on growth and water relations of cacao (Theobroma cacao var. Comum) seedlings. Plant Soil. 1987. 103: 3-11.
Lobão D, Setenta W, Lobão E, Curvelo K, Valle R. Cacau cabruca: sistema agrossilvicultural tropical. pp: 290-323. Ilhéus: Edición Valle RR, Ciência, Tecnologia e Manejo do Cacaueiro. Editorial Vital Ltda. 200.
Araque O, Jaimez R, Tezara W, Coronel I, Urich R, Espinoza W. Comparative photosynthesis, water relations, growth and survival rates in juvenile criollo cacao cultivars (Theobroma cacao) during dry and wet seasons. Exp. Agr. 2012. 48: 513-522.
Baligar V, Bunce J, Machado R, Elson M. Photosynthetic photon flux density carbon, dioxide concentration and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica. 2008. 46: 216-221.
Pereyra G, Villalobos V, Rondón O, Chacón R, Jaimez R, Tezara W. Variación estacional del intercambio gaseoso y el estado hídrico en accesiones de germoplasma nacional de cacao (Theobroma cacao L.). XVII Congreso Venezolano de Botánica, resumen in extenso. pp: 669-672. Venezuela. 2007.
Tezara W, Coronel I, Urich R, Marín O, Jaimez R, Chacón I. Plasticidad ecofisiológica de árboles de cacao (Theobroma cacao L.) en diferentes ambientes de Venezuela. En: III Congreso Latinoamericano de Ecología y IX Congreso de Ecología de Brazil. pp: 1-5. Sâo Lorenço, Brasil. 2009.
Poorter H, Bühler J, Dusschoten J, Climent J, Johannes A. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct. Plant. Biol. 2012. 39: 839-850.
Paul M, Pellny T. Carbon metabolite feedback regulation of leaf photosynthesis and development. J. Exp. Bot. 2003. 54: 539-547.
Stitt M, Quick W. Photosynthetic carbon partitioning, its regulation and possibilities for manipulation. Physiol. Plantarum. 1989. 77: 633-641.
Ray J, Sinclair T. The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. J. Exp. Bot. 1998. 49:1381-1386.
Kasai M, Koide K, Ichikawa Y. Effect of pot size on various characteristics related to photosynthetic matter production in soybean plants. Int. Jo. of Agro. 2012: 2-7.
Amthor J. The role of maintenance respiration in plant growth. Plant. Cell. Environ. 1984. 7: 561-569.
Lawlor D, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann. Bot-London. 2009. 4: 561-579.
Cornic G. Drought stress and high light effects on leaf photosynthesis. En: Baker, N.R., Bowyer, J.R. Photoinhibition of Photosynthesis. pp: 297-313. Bios Scientific Publishers. Oxford, England. 1994.
Lawlor D y Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant. Cell. Environ. 2002. 25,275-294.
Evans GC. The quantitative analysis of plant growth. pp: 734. California: University of California Press. 1972.
Sweet G, Wearing P. Role of plant growth in regulating photosynthesis. Nature. 1966. 210: 77-7.